应、特征检测与匹配定位精度等,一般来讲,距离测量精度与匹配定位精度成正比,与摄像机基线长度成反比。增大基线长度可以改善深度测量精度,但同时会增大图像间的差异,增加匹配的困难程度。因此,要设计一个精确的立体视觉系统,必须综合考虑各方面的因素,保证各环节都具有较高的精度。2.6后处理[6]后处理包括深度插值、误差校正和精度改善。立体视觉的最终目的是恢复景物可视表面的完整信息,目前,无论哪种匹配方法都不可能恢复出所有图像点的视差,因此对于一个完整的立体视觉系统,必须进行最终的表面内插重建。3基于OpenCV的三维重建OpenCV[2]中采用的定标方法是介于传统定标方法和自定标方法之间的一种方法,由张正友在其论文[3]中提出的。这种方法不需要知道摄像机运动的具体信息,这点比传统定标技术更为灵活,同时仍需要一个特定的标定物以及一组已知的特征基元的坐标,这点不如自定标灵活。它通过在至少3个不同的位置获取标定物的图像,计算出摄像机所有的内外参数。由于它比传统定标技术更为灵活,又可以得到不错的定标精度,所以被OpenCV所采纳。在这个模型的定标过程中将用到的三个坐标系:图像坐标系,摄像机坐标系和世界坐标系。通过坐标系之间的变换可以通过下面的公式把图像坐标系的点和世界坐标系[7][8]:由于矩阵A包含了摄像机全部的6个内参数,所以称A为摄像机内参数矩阵。PC为模型的外参数矩阵,可以通过以下公式得到:
一种基于OpenCV三维重建实现方案
摘要以计算机视觉三维重建技术为研究对象,分析了开放计算机视觉函数库OpenCV中的三维重建模型,通过六个步骤,特别是摄像机标定和立体匹配中极线约束方法的使用,给出了基于OpenCV的三维重建算法。该算法充分发挥了OpenCV的函数库功能,提高了计算的精度效率,具有良好的跨平台移植性,可以满足各种计算机视觉系统的需要。关键词计算机视觉;三维重建;OpenCV;摄像机标定;极线约束,